[Research] DASH Lab, Three Papers are accepted for publication at CIKM 2023 International Conference and Hosting the First Internat
- 소프트웨어융합대학
- Hit148
- 2023-09-18
DASH Lab’s three papers have been accepted for CIKM (Conference on Information and Knowledge Management) 2023, one of the top-tier international academic conferences in the artificial intelligence and information retrieval field. The papers will be presented in October. Authors are doctoral candidates in computer science and engineering, Eunju Park and Binh M. Le, along with master’s students, Beomsang Cho in computer science and engineering, Sangyoung Lee in artificial intelligence, Seungyeon Baek in artificial intelligence, Jiwon Kim in artificial intelligence. The papers are as follows:
1.Machine Unlearning Research
2.Research on Deepfakes in Collaboration with CSIRO’s Data61 in Australia
3.Research on Datasets for Online ID fraud detection
Also, the 1st international workshop on anomaly and novelty detection in satellite and drones systems is hosted at CIKM 2023. The organizing committee consists of Simon S. Woo from Sungkyunkwan University, Shahroz Tariq from CSIRO’s Data61, Youjin Shin from Catholic University, Daewon Chung from Korea Aerospace Research Institute. This workshop is centered around anomaly detection in the time-series and vision data of satellite and drone systems.
1. Sanyong Lee and Simon Woo, “UNDO: Effective and Accurate Unlearning Method for Deep Neural Networks”, Proceedings of the 32nd ACM International Conference on Information & Knowledge Management. 2023.
Machine learning has evolved through extensive data usage, including personal and private information. Regulations like GDPR highlight the "Right to be forgotten" for user and data privacy. Research in machine unlearning aims to remove specific data from pre-trained models. We introduce a novel two-step unlearning method, UNDO. First, we selectively disrupt the decision boundary of forgetting data at the coarse-grained level. However, this can also inadvertently affect the decision boundary of other remaining data, lowering the overall performance of the classification task. Hence, we subsequently repair and refine the decision boundary for each class at the fine-grained level by introducing a loss to maintain the overall performance while completely removing the class. Our approach is validated through experiments on two datasets, outperforming other methods in effectiveness and efficiency.
2. Beomsang Cho, Binh M. Le, Jiwon Kim, Simon S. Woo , Shahroz Tariq, Alsharif Abuadbba, and Kristen Moore , “Toward Understanding of Deepfake Videos in the Wild”, Proceedings of the 32nd ACM International Conference on Information & Knowledge Management. 2023.
Deepfakes have become a growing concern in recent years, prompting researchers to develop benchmark datasets and detection algorithms to tackle the issue. However, existing datasets suffer from significant drawbacks that hamper their effectiveness. Notably, these datasets fail to encompass the latest deepfake videos produced by state-of-the-art methods that are being shared across various platforms. This limitation impedes the ability to keep pace with the rapid evolution of generative AI techniques employed in real-world deepfake production. Our contributions in this IRB-approved study are to bridge this knowledge gap from current real-world deepfakes by providing in-depth analysis. We first present the largest and most diverse and recent deepfake dataset (RWDF-23) collected from the wild to date, consisting of 2,000 deepfake videos collected from 4 platforms targeting 4 different languages span created from 21 countries: Reddit, YouTube, TikTok, and Bilibili. By expanding the dataset’s scope beyond the previous research, we capture a broader range of real-world deepfake content, reflecting the ever-evolving landscape of online platforms. Also, we conduct a comprehensive analysis encompassing various aspects of deepfakes, including creators, manipulation strategies, purposes, and real-world content production methods. This allows us to gain valuable insights into the nuances and characteristics of deepfakes in different contexts. Lastly, in addition to the video content, we also collect viewer comments and interactions, enabling us to explore the engagements of internet users with deepfake content. By considering this rich contextual information, we aim to provide a holistic understanding of the evolving deepfake phenomenon and its impact on online platforms.
3. Eun-Ju Park, Seung-Yeon Back, Jeongho Kim, and Simon S. Woo, ”KID34K: A Dataset for Online Identity Card Fraud Detection”, Proceedings of the 32nd ACM International Conference on Information & Knowledge Management. 2023.
Though digital financial systems have provided users with convenient and accessible services, such as supporting banking or payment services anywhere, it is necessary to have robust security to protect against identity misuse. Thus, online digital identity (ID) verification plays a crucial role in securing financial services on mobile platforms. One of the most widely employed techniques for
digital ID verification is that mobile applications request users to take and upload a picture of their own ID cards. However, this approach has vulnerabilities where someone takes pictures of the ID cards belonging to another person displayed on a screen, or printed on paper to be verified as the ID card owner. To mitigate the risks associated with fraudulent ID card verification, we present a novel dataset for classifying cases where the ID card images that users upload to the verification system are genuine or digitally represented. Our dataset is replicas designed to resemble real ID cards, making it available while avoiding privacy issues. Through extensive experiments, we demonstrate that our dataset is effective for detecting digitally represented ID card images, not only in our replica dataset but also in the dataset consisting of real ID cards.
4. The 1st International Workshop on Anomaly and Novelty detection in Satellite and Drones systems (ANSD '23)
The workshop on Anomaly and Novelty Detection in Drones and Satellite data at CIKM 2023 aims to bring together researchers, practitioners, and industry experts to discuss the latest advancements and challenges in detecting anomalies and novelties in drone and satellite data. With the increasing availability of such data, the workshop seeks to explore the potential of machine learning and data mining techniques to enable the timely and accurate detection of unexpected events or changes. The workshop will include presentations of research papers, keynote talks, panel discussions, and poster sessions, with a focus on promoting interdisciplinary collaboration and fostering new ideas for tackling real-world problems.
Should you have questions, please ask professor Simon S. Woo(swoo@g.skku.edu) in DASH Lab(https://dash.skku.edu).
- Previous
- Kim Yoo-sung, a professor of software department, won the 2023 Spectrum Challenge Competition
- Next
- No new post